General Limit Theorem for Recursive Algorithms and Combinatorial Structures
نویسندگان
چکیده
Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method, a general transfer theorem is derived which allows us to establish a limit law on the basis of the recursive structure and to use the asymptotics of the first and second moments of the sequence. In particular, a general asymptotic normality result is obtained by this theorem which typically cannot be handled by the more common 2 metrics. As applications we derive quite automatically many asymptotic limit results ranging from the size of tries or m-ary search trees and path lengths in digital structures to mergesort and parameters of random recursive trees, which were previously shown by different methods one by one. We also obtain a related local density approximation result as well as a global approximation result. For the proofs of these results we establish that a smoothed density distance as well as a smoothed total variation distance can be estimated from above by the Zolotarev metric, which is the main tool in this article.
منابع مشابه
A General Limit Theorem for Recursive Algorithms and Combinatorial Structures
Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method, a general transfer theorem is derived which allows us to establish a limit law on the basis of the recursive structu...
متن کاملA General Contraction Theorem and Asymptotic Normality in Combinatorial Structures
Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method a general transfer theorem is derived, which allows to establish a limit law on the basis of the recursive structure ...
متن کاملIndividual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملAnalysis of algorithms by the contraction method: additive and max-recursive sequences
In the first part of this paper we give an introduction to the contraction method for the analysis of additive recursive sequences of divide and conquer type. Recently some general limit theorems have been obtained by this method based on a general transfer theorem. This allows to conclude from the recursive structure and the asymptotics of first moment(s) the limiting distribution. In the seco...
متن کاملComplexity Analysis via Approach Spaces
Complexity of a recursive algorithm typically is related to the solution to a recurrence equation based on its recursive structure. For a broad class of recursive algorithms we model their complexity in what we call the complexity approach space, the space of all functions in X = ]0,∞]Y , where Y can be a more dimensional input space. The set X, which is a dcpo for the pointwise order, moreover...
متن کامل